NMC SAMPLE PROBLEMS: GRADE 11

1. Which one of the following functions has different domain? (c) $\frac{1}{x^{11}+1}$ (d) $\frac{4}{x\sqrt{x^2+1}}$ (e) $\frac{x-1}{x(x^2+1)}$ (a) $\frac{1}{x}$ (b) $\frac{1}{r^{10}}$ In the expansion of $(x + y)^8$, what is the coefficient of x^4y^4 ? 2. (a) 60 (b) 70 (c) 80 (d) 90 (e) 100 Find the equation of the circle centered at $(\frac{1}{2}, 0)$ passing through the point (0, 1). 3. (a) $(x - \frac{1}{2})^2 + y^2 = \frac{5}{4}$ (b) $(x+\frac{1}{2})^2 + y^2 = \frac{\sqrt{5}}{2}$ (c) $x^2 + (y - \frac{1}{2})^2 = \frac{\sqrt{5}}{2}$ (d) $(x - \frac{1}{2})^2 + y^2 = \frac{\sqrt{5}}{2}$ (e) $x^2 + (y - \frac{1}{2})^2 = \frac{5}{4}$ What is the solution set of the following equation: $\ln(x^2 - x) = \ln(2x - 2)$?(Here, $\ln x = \log_e x$) **4**. (c) $\{2\}$ (a) $\{0\}$ (b) $\{1\}$ (d) $\{1, 2\}$ (e) $\{0,1\}$ Evaluate $\log_{1/2} 8$. **5**. (b) -2(c) -1(a) −3 (d) 1 (e) 2**6**. Find the sum of the maximum and minimum values of the expression $-10\sin(x+2)+5$. (a) -5(b) 5 (c) -10(d) 10 (e) 15 Find the sum of all solutions of the equation |2x - 1| - |x - 5| = 100. 7. (b) −8 (c) 3 (d) -3(a) 8 (e) 0 Find the polar coordinates (r, θ) for the point with rectangular coordinates $(x, y) = (\sqrt{2}, \sqrt{2})$. 8. (b) $(\sqrt{2}, \frac{\pi}{4})$ (c) $(2, \pi)$ (d) $(2, \frac{3\pi}{2})$ (e) $(2, 2\pi)$ (a) $(2, \frac{\pi}{4})$ If $10^x = \frac{1}{2}$, then which of the following is 10^{2x-1} ? 9. (c) $\frac{3}{5}$ (b) $\frac{2}{5}$ (d) $\frac{1}{40}$ (a) 1 (e) $\frac{3}{40}$ If $\csc x = 10$ and $-90^{\circ} < x < 90^{\circ}$, then what is $\cos x$? **10**. (d) $-\frac{3\sqrt{11}}{10}$ (a) $\frac{3\sqrt{11}}{5}$ (b) $-\frac{3\sqrt{11}}{5}$ (c) $\frac{3\sqrt{11}}{10}$ (e) $\frac{\sqrt{11}}{10}$

11.	Find the equation of the straight line which passes through the point $(0,0)$ and is perpendicular to $83x + 24y + 1 = 0$.						
	(a) $83x - 24y = 0$) (b) 2	24x + 83y = 0	(c) $24x - 8$	83y = 0		
	(d) $24x - 83y + 1$	e = 0 (e) 2	24x + 83y - 1 = 0				
12 .	Find the vertex point of the parabola $x - y^2 + 1 = 0$.						
	(a) $(1,0)$	(b) $(-1,0)$	(c) $(0,1)$	(d) $(0, -1)$	(e) $(-1, -1)$		
13.	Find the rectangular coordinates (x, y) for the point with polar coordinates $(r, \theta) = (2, \frac{3\pi}{4})$.						
	(a) $(-\sqrt{2},\sqrt{2})$	(b) $(\sqrt{2}, -\sqrt{2})$	(c) $(-\sqrt{2}, -\sqrt{2})$	(d) $(\sqrt{2}, \sqrt{2})$	(e) $(2,2)$		
14.	When $\cos \theta = \frac{1}{5}$ and $\tan \theta > 0$, find $\sin \theta$.						
	(a) $\frac{4}{5}$	(b) $-\frac{4}{5}$	(c) $\frac{2\sqrt{6}}{5}$	(d) $-\frac{2\sqrt{6}}{5}$	(e) $\frac{3}{5}$		
15.	Let x and y be readered.	Let x and y be real numbers satisfying the following two conditions: $1 - \frac{3}{3} - \frac{3}{3} - 16$					
	x - y = 1 and $x - y = 10Find x^2 + y^2$						
	(a) 9	(b) 10	(c) 11	(d) 12	(e) 13		
16 .	Find the sum $1 +$	Find the sum $1 + 10 + 10^2 + \dots + 10^{10}$.					
	(a) $\frac{10^{10}-1}{9}$	(b) $\frac{10^{10}+1}{9}$	(c) $\frac{10^{10}}{9}$	(d) $\frac{10^{11}+1}{9}$	(e) $\frac{10^{11}-1}{9}$		
17.	What is the remainder when $1! + 2! + 3! + \cdots + 2018!$ is divided by 10?						
	(a) 3	(b) 4	(c) 5	(d) 6	(e) 0		
18.	How many seven of	How many seven digit numbers contain the digit pattern "2018" exactly once?					
	(a) 2700	(b) 3000	(c) 3400	(d) 3700	(e) 4000		
19.	Let α , β and γ be three roots of $x^3 + 1 = 0$. Find the product $p(\alpha)p(\beta)p(\gamma)$, where $p(x) = x^4 + 4x^3 - x + 4$.						
	(a) -8	(b) -4	(c) 0	(d) 4	(e) 8		

21. Suppose a, b, c and d are integers, and $x = \sqrt{1 + \sqrt{2}}$ is a solution of the equation $x^4 + ax^3 + bx^2 + cx + d = 0$. What is the sum a + b + c + d?

- (a) 3 (b) -3 (c) 6 (d) -6 (e) -15
- **22.** What is the remainder when $x^{2020} + 2020$ is divided by x + 1?(a) 2017(b) 2018(c) 2019(d) 2020(e) 2021
- 23. Find the value of the product: $\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) \cdots \left(1 - \frac{1}{100^2}\right)$ (a) $\frac{101}{100}$ (b) $\frac{101}{200}$ (c) $\frac{101}{300}$ (d) $\frac{101}{400}$ (e) $\frac{101}{500}$

24. Which one is the number of the real solutions of the equation $e^{-x} - \sin x = 0$?(a) 0 (no solutions)(b) 2 (two solutions)(c) 4 (four solutions)(d) 6 (six solutions)(e) ∞ (infinitely many solutions)

25. A ball is thrown vertically upward and its height after t seconds is $h(t) = 6.5 + 40t - 32t^2$ feet. Find the maximum height reached by the ball.

(a) 16 feet (b) 17 feet (c) 18 feet (d) 19 feet (e) 20 feet

26. The function f(x) = x/(x-1) has one horizontal asymptote, say y = a, and one vertical asymptote, say x = b. Find a + b.
(a) -1
(b) 0
(c) 1
(d) 2
(e) 3

27. If $\sin x + \cos x = \frac{9}{7}$, then what is the value of $|\sin x - \cos x|$? (a) $\frac{\sqrt{3}}{2}$ (b) $\frac{\sqrt{3}}{4}$ (c) $\frac{\sqrt{17}}{7}$ (d) $\frac{1}{8}$ (e) $\frac{2}{9}$ **28**. Find the remainder when $1 + 2 + 3 + \cdots + 1999 + 2000$ is divided by 1000.

(a) 4 (b) 3 (c) 2 (d) 1 (e)
$$0$$

29. Evaluate
$$\left(\frac{-1+\sqrt{3}i}{2}\right)^{100}$$
.
(a) 0 (b) 1 (c) $\frac{-1+\sqrt{3}i}{2}$ (d) $\frac{-1-\sqrt{3}i}{2}$ (e) $\frac{1+i}{2}$

30. Let $a_{100}, a_{99}, \dots, a_1$ and a_0 be the coefficients of the expansion of the expression $(x+1)^{100}$, that is $(x+1)^{100} = a_{100}x^{100} + a_{99}x^{99} + \dots + a_1x + a_0$ Find the sum of even coefficients, $a_{100} + a_{98} + \dots + a_2 + a_0$.

- (a) 2^{99} (b) 2^{98} (c) 2^{97} (d) 2^{96} (e) 2^{95}
- **31.** Find the minimum value of $3 \sin x 4 \cos x + 1$. (a) 4 (b) 0 (c) -4 (d) -8 (e) -12

32. Find the solution set of the equation
$$(5^{2x+1})^{x+8} = 5^2$$
.
(a) $\{\frac{-2\pm\sqrt{29}}{7}\}$ (b) $\{\frac{-21\pm\sqrt{29}}{7}\}$ (c) $\{\frac{19\pm\sqrt{222}}{7}\}$ (d) $\{\frac{-17\pm\sqrt{241}}{4}\}$ (e) $\{\}$ (No solution)

33. If $\sin x + \cos x = \frac{1}{2}$, then what is the value of $\sin^3 x + \cos^3 x$? (a) $-\frac{11}{16}$ (b) $\frac{11}{16}$ (c) $-\frac{3}{8}$ (d) $\frac{3}{8}$ (e) $\frac{1}{8}$

- **34**. There are 2 red ball, 2 blue balls, and 4 white balls in a bag. If James takes out four balls at once, then what is the probability that he takes out at least two white balls?
 - (a) $\frac{17}{70}$ (b) $\frac{53}{70}$ (c) $\frac{1}{7}$ (d) $\frac{6}{35}$ (e) $\frac{1}{5}$

35. A committee composed of Alice, Mark, Ben, Connie and Francisco is about to select two representatives randomly. What is the probability that Ben is not included in the selection?

- (a) $\frac{3}{5}$ (b) $\frac{3}{10}$ (c) $\frac{1}{5}$ (d) $\frac{4}{5}$ (e) $\frac{2}{5}$
- 36. Find the sum of all integers between 1 to 1000 (inclusive) that are not multiples of 8.
 (a) 500 × 875
 (b) 400 × 875
 (c) 300 × 875
 (d) 200 × 875
 (e) 100 × 875

37. Evaluate the following $(\ln x = \log_e x)$:

$$\ln\left(\frac{1}{2}\right) + \ln\left(\frac{2}{3}\right) + \ln\left(\frac{3}{4}\right) + \dots + \ln\left(\frac{999}{1000}\right)$$

(a) $3\ln 5$ (b) $-3\ln 5$ (c) $3\ln 10$ (d) $-3\ln 10$ (e) 10

38. How many functions which are one-to-one are there from the set $X = \{a, b, c\}$ to the set $Y = \{1, 2, 3, 4\}$?

- (a) 10 (b) 24 (c) 30 (d) 40 (e) 64
- **39**. Let z = a + i be a complex number, where *a* is a positive real number $(i^2 = -1)$. If the real part of z^2 equals that of \bar{z} , then what is *a*?

(a) 1 (b)
$$\frac{1+\sqrt{5}}{2}$$
 (c) $\frac{-1+\sqrt{5}}{2}$ (d) $\frac{2+\sqrt{5}}{2}$ (e) 2

- **40**. What is the average of the numbers in the set $\{-7, -2, 3, 8, \cdots, 93\}$ given by an arithmetic progression?
 - (a) 41 (b) 42 (c) 43 (d) 44 (e) 45
- 41. The rational function $f(x) = \frac{ax+b}{x}$ has the inverse function $f^{-1}(x) = \frac{3}{2x+1}$. Find a+b. (a) 1 (b) -1 (c) 0 (d) 2 (e) -2
- **42**. Find $4\cos B + 3\cos A$ of the following triangle.

- **43**. An employee of a computer store is paid a base salary \$2,535 a month plus a 5% commission on all sales over \$4,000 during the month (For example, if the gross sales during the month is \$5000, then the commission is \$50). How much must the employee sell in a month to earn a total of \$2,852 for the month?
 - (a) \$6,200 (b) \$7,200 (c) \$9,200 (d) \$10,340 (e) \$20,340
- 44. A speedboat takes a half hour longer to go 8 miles up a river than to return. If the boat cruises at 20 miles per hour in still water, what is the rate of the current? (The units are miles/hour.)
 - (a) $4(\sqrt{41}-4)$ (b) $4\sqrt{2}$ (c) $4(\sqrt{2}-1)$ (d) 6 (e) 8

45 .	Which one of the following is the greatest?						
	(a) 80^5	(b) 63^5	(c) 8^{10}	(d) 6^{10}	(e) 3^{20}		
46 .	Suppose that a, b are integers and $1 - \sqrt{5}$ is a solution of the equation $x^3 + x^2 + ax + b = 0$. Find $a + b$.						
	(a) 10	(b) -10	(c) 22	(d) -22	(e) 0		
47.	Harry performed the calculation: $5 \times 8 = 44$. It turns out Harry's calculation is correct in base <i>b</i> . Find the value <i>b</i> .						
	(a) 9	(b) 10	(c) 11	(d) 12	(e) 13		
48.	Suppose that $f(x)$ is a polynomial with integer coefficients, having 100 and 200 as zeros. Which of the following could possibly be the value of $f(150)$?						
	(a) 2	(b) $2^2 \cdot 5$	(c) 5^2	(d) $2 \cdot 5^4$	(e) $2^3 \cdot 5^4$		
49 .	A polynomial $f(x) = x^3 + ax^2 + bx + c$ satisfies $f(1) = 1$, $f(2) = 2$ and $f(3) = 3$. What is the remainder when $f(x)$ is divided by $x - 4$?						
	(a) 10	(b) 5	(c) 0	(d) -5	(e) -10		
50.	Evaluate $\frac{2020^4 + 3 \cdot 2020^3 - 3 \cdot 2020^2 + 6 \cdot 2020 + 8}{2020^3 - 2020^2 + 2020 + 2}.$						
	(a) 2016	(b) 2018	(c) 2020	(d) 2022	(e) 2024		
51 .	The domain of the function						
		f(x) = 1	$\log_{10} \left(\log_2 \left(\log_3 \left(\log_5 \right) \right) \right)$	(x, x)))			
	is $\{x x > c\}$. What	at is the value of c ?	() 10	(1) 100	() 105		
	(a) 0	(b) 1	(c) 10	(d) 100	(e) 125		
52 .	What is the solution set of the following equation: $\ln x^2 - 2x + 1 = \ln 3x - 3 $? (Here, $\ln x = \log_e x$)						
	(a) $\{0\}$	(b) $\{1\}$	(c) $\{1, 4, -2\}$	(d) $\{4, -2\}$	(e) $\{0,1\}$		
53.	What is the numb (a) 1 (one solution (d) 4 (four solution	oper of real solutions ons) (b) ons) (e)	of the equation $ \sin 2$ (two solutions) ∞ (infinitely many s	$ x - \frac{2}{\pi} x = 0?$ (c) 3 (three solutions)	ee solutions)		

54. Let $a_{2020}, a_{2019}, \dots, a_1$ and a_0 be the coefficients of the expansion of the expression $(x+2)^{2020}$, that is

$$(x+2)^{2020} = a_{2020}x^{2020} + a_{2019}x^{2019} + \dots + a_1x + a_0$$

What is the sum of even coefficients $a_{2020} + a_{2018} + a_{2016} + a_{2016} + \cdots + a_2 + a_0$ of all even indices.

(a) 0 (b) 1 (c)
$$-1$$
 (d) $\frac{1+3^{2020}}{2}$ (e) $\frac{1-3^{2020}}{2}$

55. There are 3 red ball, 2 blue balls, and 4 white balls in a bag. If James takes out five balls at once, then what is the probability that he takes out at least three white balls?

(a) $\frac{1}{2}$ (b) $\frac{1}{4}$ (c) $\frac{1}{5}$ (d) $\frac{11}{14}$ (e) $\frac{45}{126}$

- 56. Suppose that a, b are integers and $2 + \sqrt{3}$ is a solution of the equation $x^3 + ax^2 + bx + 1 = 0$. Find a + b.
 - (a) 0 (b) -5 (c) 5 (d) -6 (e) 6
- 57. A polynomial f(x) of degree ≥ 2 whose coefficients are all integers satisfies f(2) = 2 and f(-2) = -2. What is the remainder when f(x) is divided by $x^2 4$?
- **58**. Let f be a function satisfying the following equation:

f(x) = f(x+1) for all real numbers x Suppose further f(x) > 0 for all x. What is the value of $\frac{f(\pi+1)}{f(\pi-1)}$?

59. The sides a, b, c of a right triangle satisfy the following equation

 $a^2 + b^2 + c^2 = 1.$

Find the length of the hypotenuse?

60. Find $\frac{\sin A + \sin B + \sin C}{\cos A + \cos B + \cos C}$ of the following triangle.

- **61**. Find the remainder when 1234^{4321} is divided by 5.
- **62**. If $\log_9 4 = a$, then what is $\log_{16} 81$ in terms of a?
- **63**. Let a and b be integers which satisfy $\sqrt{43 + 30\sqrt{2}} = a + b\sqrt{2}$. Find a + b.

64. Let f be a function satisfying the following equation:

$$f(x) = \pi x f(1-x)$$
 for all real numbers x.

Find f(100).

65. How many ordered pairs (x, y) of real numbers are there which satisfy the following equations?

$$x^{100} + y^{100} = x^{101} + y^{101} = x^{102} + y^{102}.$$

66. The sides of a right triangle form an arithmetic progression. Find the ratio of the shorter leg to the hypotenuse.

 \triangleright KEYS \lhd

[1]	(c)	[18] (d)	[35] (a)	[52] (d)
[2]	(b)	[19] (e)	[36] (a)	[53] (c)
[3]	(a)	[20] (c)	[37] (d)	[54] (d)
[4]	(c)	[21] (b)	[38] (b)	[55] (e)
[5]	(a)	[22] (e)	[39] (b)	[56] (d)
[6]	(d)	[23] (b)	[40] (c)	[57] <i>x</i>
[7]	(b)	[24] (e)	[41] (a)	[58] 1
[8]	(a)	[25] (d)	[42] (b)	$[59] \frac{1}{\sqrt{2}}$
[9]	(d)	[26] (d)	[43] (d)	[60] $\frac{3\sqrt{15}}{7}$
[10]	(c)	[27] (c)	[44] (a)	[61] 4
[11]	(c)	[28] (e)	[45] (e)	[62] $\frac{1}{a}$
[12]	(b)	[29] (c)	[46] (d)	[63] 8
[13]	(a)	[30] (a)	[47] (a)	[64] 0
[14]	(c)	[31] (c)	[48] (e)	[65] 4
[15]	(c)	[32] (d)	[49] (a)	[66] 3/5
[16]	(e)	[33] (b)	[50] (e)	
[17]	(a)	[34] (b)	[51] (e)	